
1

Weighted Tree Automata II. –
A Kleene theorem for wta over M-monoids

Zoltán Fülöp
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Multioperator monoid

A multioperator monoid (for short: M-monoid) (A,⊕, 0,Ω) consists of

- a commutative monoid (A,⊕, 0) and

- an Ω-algebra (A, Ω)

- with idA ∈ Ω(1) and 0m ∈ Ω(m) for m ≥ 0.

A is distributive if

ωA(b1, . . . , bi−1,

n
M

j=1

aj , bi+1, . . . , bm) =
n

M

j=1

ωA(b1, . . . , bi−1, aj , bi+1, . . . , bm)

holds for every m, n ≥ 0, ω ∈ Ω(m), b1, . . . , bm ∈ A, 1 ≤ i ≤ m, and
a1, . . . , an ∈ A. In particular, ωA(. . . , 0, . . . , ) = 0.
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Operations on Ops(A)

Ops(A) (Opsk(A)) is the set of operations (k-ary operations) on A.

Let (A,⊕, 0, Ω) be an M-monoid and k ≥ 0.

• Let ω1, ω2 ∈ Opsk(A). The sum of ω1 and ω2 is the k-ary operation

ω1⊕ω2 that is defined, for every ~a ∈ Ak, by (ω1⊕ω2)(~a) = ω1(~a)⊕ω2(~a).

• Let ω ∈ Opsk(A) and ωj ∈ Opslj (A) with lj ≥ 0 for every 1 ≤ j ≤ k. The

composition of ω with (ω1, . . . , ωk) is the (l1 + · · ·+ lk)-ary operation
ω(ω1, . . . , ωk) that is defined by

`

ω(ω1, . . . , ωk)
´

( ~a1, . . . , ~ak) = ω(ω1( ~a1), . . . , ωk( ~ak))

for every ~aj ∈ Alj with 1 ≤ j ≤ k.

(Opsk(A),⊕,0k) is a commutative monoid for every k ≥ 0, for k = 0 is

isomorphic to the monoid (A,⊕,0).

Sum is left- and right- distributive, and composition is associative.
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Uniform tree valuations

|t|Z is the number of occurrences of variables of Z in t

Uvals(Σ, Z, A) is the class of mappings S : TΣ(Z)→ Ops(A) such that the

arity of (S, t) is |t|Z . Such mappings are called uniform tree valuations over
Σ, Z and A.

• Hence Uvals(Σ, ∅, A) = A〈〈TΣ〉〉.

• (e0, t) = 0|t|Z for every t ∈ TΣ(Z).

• The sum of S1, S2 ∈ Uvals(Σ, Z, A) is the uniform tree valuation S1⊕
u S2

defined by (S1⊕
u S2, t) = (S1, t)⊕ (S2, t) for every t ∈ TΣ(Z).

• (Uvals(Σ, Z, A),⊕u, e0) is a commutative monoid; for Z = ∅ it is nothing

but (A〈〈TΣ〉〉,⊕, e0).

• For S ∈ Uvals(Σ, Z, A) we write S =
Lu

t∈TΣ(Z)(S, t).t.



6

Weighted tree automata (wta) over M-monoids

Syntax

A system M = (Q, Σ, Z, A, F, µ, ν) (over Σ, Z and A)

- Q,Σ, Z as before,

- (A,⊕, 0, Ω) is an M-monoid,

- F : Q→ Ω(1) is the root weight,

- µ = (µm | m ≥ 0) is the family of transition mappings with

µm : Qm × Σ(m) ×Q→ Ω(m),

- ν : Z ×Q→ Ω(1), the variable assignment.

Such a wta recognizes a uniform tree valuation, i.e., a mapping

SM : TΣ(Z)→ Ops(A) in Uvals(Σ, Z, A).

In case Z = ∅ it recognizes a tree series in A〈〈TΣ〉〉.
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Wta over M-monoids

Semantics

M = (Q,Σ, Z, A, F, µ, ν) a wta over the M-monoid A and t ∈ TΣ(Z)

- a run of M on t is a mapping r : pos(t)→ Q

- the set of runs of M on t is RM (t)

- for w ∈ pos(t), the weight wt(t, r, w) of w in t under r

• if t(w) = z for some z ∈ Z, then wt(t, r, w) = ν(z, r(w))

• otherwise (if t(w) = σ for some σ ∈ Σ(k), k ≥ 0) wt(t, r, w) =

µk(r(w1), . . . , r(wk), t(w), r(w))(wt(t, r, w1), . . . , wt(t, r, wk))

• the weight of r is wt(t, r) = wt(t, r, ε).

The uniform tree valuation SM : TΣ(Z)→ A recognized by M is defined by

SM (t) =
M

r∈RM (t)

F (r(ε))(wt(t, r)).
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An example of a wta over M-monoids

The tree series height : TΣ → N can be recognized by

M = (Q,Σ, A, F, µ),

where

• Q = {q},

• A = (N,−,−, Ω) with {1 + max{n1, . . . , nk} | k ≥ 0} ⊆ Ω,

• F (q) = idN, and

• µ0(α, q) = 0 and for every k ≥ 1 and σ ∈ Σ(k), let
µk(q . . . q, σ, q) = 1 + max{n1, . . . , nk}.

Then SM = height.
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Rational operations on Uvals(Σ, Z, A)

1. The sum ⊕u : (S1⊕
u S2, t) = (S1, t)⊕ (S2, t).

2. The top-concatenation: for k ≥ 0, σ ∈ Σ(k), ω ∈ Ω(k), and
S1, . . . , Sk ∈ Uvals(Σ, Z, A), we define

topσ,ω(S1, . . . , Sk) =
Mu

t1,...,tk∈TΣ(Z)

ω((S1, t1), . . . , (Sk, tk)).σ(t1, . . . , tk).

3. The z-concatenation: for every z ∈ Z and S, S′ ∈ Uvals(Σ, Z, A), we

define

S·zS
′ =

Mu

s∈TΣ(Z), l=|s|z
t1,...,tl∈TΣ(Z)

“

(S, s)◦s,z((S′
, t1), . . . , (S

′
, tl))

”

.s[z ← (t1, . . . , tl)] .
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Rational operations on Uvals(Σ, Z, A)

4. The z-KLEENE-star : for every z ∈ Z and S ∈ Uvals(Σ, Z, A) we define:

(i) S0
z = e0; and

(ii) Sn+1
z = (S ·z Sn

z )⊕u idA.z.

Then, the z-KLEENE star S∗
z of S is defined as follows:

If S is z-proper, i.e., (S, z) = 0, then

(S∗
z , t) = (Sheight(t)+1

z , t)

for every t ∈ TΣ(Z), otherwise S∗
z = e0.
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Rational expressions (over Σ, Z and A)

RatExp(Σ, Z, A) (over Σ, Z, and A) is the smallest set R satisfying

Conditions (i)–(v). For every ratexp η ∈ RatExp(Σ, Z, A) we define its
semantics [[η]] ∈ Uvals(Σ, Z, A) simultaneously.

(i) For every z ∈ Z and ω ∈ Ω(1) we have ω.z ∈ R and [[ω.z]] = ω.z.

(ii) For every k ≥ 0, σ ∈ Σ(k), ω ∈ Ω(k), and rational expressions
η1, . . . , ηk ∈ R we have topσ,ω(η1, . . . , ηk) ∈ R and

[[topσ,ω(η1, . . . , ηk)]] = topσ,ω([[η1]], . . . , [[ηk]]).

(iii) For every η1, η2 ∈ R we have η1 + η2 ∈ R and [[η1 + η2]] = [[η1]]⊕
u[[η2]].

(iv) For every η1, η2 ∈ R and z ∈ Z we have η1 ·z η2 ∈ R and

[[η1 ·z η2]] = [[η1]] ·z [[η2]].

(v) For every η ∈ R and z ∈ Z we have η∗
z ∈ R and [[η∗

z ]] = [[η]]∗z .
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Rational tree valuations (over Σ, Z and A)

We call S ∈ Uvals(Σ, Z, A) rational, if there exists a rational expression

η ∈ RatExp(Σ, Z, A) such that [[η]] = S.

Rat(Σ, Z, A) is the class of rational uniform tree valuations over Σ, Z and A.

Then Rat(Σ, Z, A) is the smallest class of uniform tree valuations which
contains the uniform tree valuation ω.z for every z ∈ Z and ω ∈ Ω(1) and is

closed under the rational operations.
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Kleene theorem for wta over M-monoids

a) Recognizable⇒ rational:

Theorem. If A is distributive, then for every wta M = (Q,Σ, Z, A, F, µ, ν) there

exists a rational expression η ∈ RatExp(Σ, Z ∪Q,A) such that
SM = [[η]]|TΣ(Z).

Hence we have Rec(Σ, Z, A) ⊆ Rat(Σ, fin, A)|TΣ(Z), where

Rat(Σ, fin, A) =
[

Z finite set

Rat(Σ, Z, A).
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Kleene theorem for wta over M-monoids

The M-monoid (A,⊕, 0,Ω) is

• sum closed, if ω1 ⊕ ω2 ∈ Ω(k) for every k ≥ 0 and ω1, ω2 ∈ Ω(k).

• (1, ⋆)-composition closed, if ω(ω′) ∈ Ω(k) for every k ≥ 0, ω ∈ Ω(1), and
ω′ ∈ Ω(k).

• (⋆, 1)-composition closed, if ω(ω1, . . . , ωk) ∈ Ω(k) for every k ≥ 0,
ω ∈ Ω(k), and ω1, . . . , ωk ∈ Ω(1).

b) Rational⇒ recognizable:

Theorem. Let A be a distributive, (1, ⋆)-composition closed and sum closed.
Then Rec(Σ, Z, A) contains the uniform tree valuation ω.z for every z ∈ Z and

ω ∈ Ω(1), and it is closed under the rational operations.
Hence, Rat(Σ, Z, A) ⊆ Rec(Σ, Z, A).
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Kleene theorem for wta over M-monoids

In case Z = ∅:

Theorem. For every (1, ⋆)-composition closed and sum closed DM-monoid A,

we have Rec(Σ, ∅, A) = Rat(Σ, fin, A)|TΣ .

Proof. We have

Rec(Σ, ∅, A) ⊆ Rat(Σ, fin, A)|TΣ ⊆ Rec(Σ, fin, A)|TΣ ⊆ Rec(Σ, ∅, A)

where the last inclusion can be seen as follows. Let S ∈ Rec(Σ, fin, A)|TΣ .
Thus, there exist a wta M = (Q,Σ, Z, A, F, µ, ν) such that S = SM |TΣ . It is

easy to see that for the wta N = (Q, Σ, ∅, A, F, µ, ∅) we have that
SN = SM |TΣ . Thus S ∈ Rec(Σ, ∅, A).



16

Wta over (arbitrary) semirings

M = (Q,Σ, Z, K, F, δ, ν) a wta, K is a semiring, t ∈ TΣ(Z)

- a run of M on t is a mapping r : pos(t)→ Q

- the set of runs of M on t is RM (t)

- for w ∈ pos(t), the weight wt(t, r, w) of w in t under r

• if t(w) = z for some z ∈ Z, then wt(t, r, w) = ν(z, r(w))

• otherwise (if t(w) = σ for some σ ∈ Σ(k), k ≥ 0)
wt(t, r, w) = δk(r(w1), . . . , r(wk), t(w), r(w))

• the weight of r is wt(t, r) =
Q

w∈pos(t) wt(t, r, w), where the order of the
product is the postorder tree walk.

The tree series SM : TΣ(Z)→ K recognized by M is

SM (t) =
X

r∈RM (t)

wt(t, r) · F (r(ε)).

The class of recognizable tree series by such wta: Recsr(Σ, Z, K).
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Semiring M-monoids

An arbitrary semiring (K,⊕,⊙, 0, 1) can be simulated by an appropriate
M-monoid:

for every a ∈ K, let mul
(k)
a : Kk → K be the mapping defined as follows: for

every a1, . . . , ak ∈ K we have mul
(k)
a (a1, . . . , ak) = a1 ⊙ · · · ⊙ ak ⊙ a.

Moreover, let D(K) = (K,⊕,0,Ω), where Ω(k) = {mul
(k)
a | a ∈ K}.

Then D(K) is a distributive, sum closed, and (1, ⋆)-composition closed

M-monoid. (idK = mul
(1)
1 and 0k = mul

(k)
0 .)

Theorem. Recsr(Σ, Z, K) = Rec(Σ, Z, D(K)).
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A Kleene theorem for wta over arbitrary semirings

Theorem. Recsr(Σ, K) = Rat(Σ,fin, D(K))|TΣ for every semiring K.

Proof.

Recsr(Σ,K) = Rec(Σ, ∅, D(K)) = Rat(Σ, fin, D(K))|TΣ
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Rational tree series over a semiring K

The set of rational tree series expressions over Σ, Z and K, denoted by
RatExp(Σ, Z, K), is the smallest set R which satisfies Conditions (1)-(6). For

every η ∈ RatExp(Σ, Z, K) we define [[η]]sr ∈ K〈〈TΣ(Z)〉〉 simultaneously.

1. For every z ∈ Z, the expression z ∈ R, and [[z]]sr = 1.z.

2. For every k ≥ 0, σ ∈ Σ(k), and η1, . . . , ηk ∈ R, the expression
σ(η1, . . . , ηk) ∈ R and [[σ(η1, . . . , ηk)]]sr = topσ([[η1]]sr, . . . , [[ηk]]sr).

3. For every η ∈ R and a ∈ K, the expression (aη) ∈ R and
[[(aη)]]sr = a[[η]]sr.

4. For every η1, η2 ∈ R, the expression (η1 + η2) ∈ R and

[[(η1 + η2)]]sr = [[η1]]sr + [[η2]]sr.

5. For every η1, η2 ∈ R and z ∈ Z, the expression (η1 ◦z η2) ∈ R and

[[(η1 ◦z η2)]]sr = [[η1]]sr ◦z [[η2]]sr.

6. For every η ∈ R and z ∈ Z, the expression (η∗
z) ∈ R and

[[(η∗
z)]]sr = [[η]]∗sr,z.

The class of rational tree series: Ratsr(Σ, Z, K).



20

A Kleene theorem for wta over commutative semirings

We can relate rational tree series over Σ, Z, and K and rational uniform tree
valuations over Σ, Z, and D(K).

For this, define:

one : Umaps(Σ, Z, D(K))→ K〈〈TΣ(Z)〉〉 as follows.

For every S ∈ Umaps(Σ, Z, D(K)) and t ∈ TΣ∪Z , let
(one(S), t) = (S, t)(1, . . . , 1), where the number of arguments 1 is |t|Z .

Note that (one(S), t) = (S, t) for every t ∈ TΣ. We extend one to classes in the
usual way.

Lemma. For every commutative semiring K, we have
Ratsr(Σ, Z, K) = one(Rat(Σ, Z, D(K))).
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A Kleene theorem for wta over commutative semirings

Corollary. For every commutative semiring K, we have that
Recsr(Σ,K) = Ratsr(Σ, fin, K)|TΣ .

Proof.

a) Ratsr(Σ, Z, K)|TΣ = one(Rat(Σ, Z, D(K)))|TΣ = Rat(Σ, Z, D(K))|TΣ

Then

Ratsr(Σ, fin, K)|TΣ = Rat(Σ, fin, D(K))|TΣ

b) We already proved

Recsr(Σ,K) = Rec(Σ, ∅, D(K)) = Rat(Σ, fin, D(K))|TΣ
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Kleene theorem for wta over commutative semirings

Lemma. For every commutative semiring K, we have
Ratsr(Σ, Z, K) = one(Rat(Σ, Z, D(K))).

Proof. We redefine rational expressions over Σ, Z and D(K):

RatExp′(Σ, Z, D(K)) and Rat′(Σ, Z, D(K))

(i) For every z ∈ Z we have z ∈ R and [[z]] = mul
(1)
1 .z.

(ii) For every k ≥ 0, σ ∈ Σ(k) and rational expressions η1, . . . , ηk ∈ R we
have σ(η1, . . . , ηk) ∈ R and σ(η1, . . . , ηk)]] = top

σ,mul
(k)
1

([[η1]], . . . , [[ηk]]).

(iii) For every η ∈ R and a ∈ K, the expression (aη) ∈ R and

[[(aη)]] = mul
(1)
a ◦[[η]].

(iv) For every η1, η2 ∈ R we have η1 + η2 ∈ R and [[η1 + η2]] = [[η1]]⊕
u[[η2]].

(v) For every η1, η2 ∈ R and z ∈ Z we have η1 ·z η2 ∈ R and
[[η1 ·z η2]] = [[η1]] ·z [[η2]].

(vi) For every η ∈ R and z ∈ Z we have η∗
z ∈ R and [[η∗

z ]] = [[η]]∗z .
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Kleene theorem for wta over commutative semirings

Then

Rat′(Σ, Z, D(K)) = Rat(Σ, Z, D(K)) and

RatExp′(Σ, Z, D(K)) = RatExp(Σ, Z, K).

Thus we can prove by induction on η: for every η ∈ RatExp′(Σ, Z, D(K)),

t ∈ TΣ(Z), and a1, . . . , an ∈ K, we have that

([[η]], t)(a1, . . . , an) = ([[η]]sr, t)⊙ a1 ⊙ . . .⊙ an.

This implies that for every η ∈ RatExp′(Σ, Z, D(K)), we have

[[η]]sr = one([[η]]), where [[η]]sr denotes the semiring semantics of η.
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