Weighted Tree Automata II. – A Kleene theorem for wta over M-monoids

1

Zoltán Fülöp University of Szeged Department of Foundations of Computer Science fulop@inf.u-szeged.hu

November 10, 2009

Contents

- Multioperator monoids (M-monoids)
- Uniform tree valuations
- Wta over M-monoids, recognizable uniform tree valuations
- Rational operations, rational uniform tree valuations
- Kleene theorem for recognizable uniform tree valuations
- Kleene theorem for (non commutative) semirings
- Kleene theorem for commutative semirings is a corollary
- References

Multioperator monoid

A multioperator monoid (for short: M-monoid) $(A, \oplus, 0, \Omega)$ consists of

- a commutative monoid $(A, \oplus, 0)$ and
- an Ω -algebra (A, Ω)
- with $\operatorname{id}_A \in \Omega^{(1)}$ and $0^m \in \Omega^{(m)}$ for $m \ge 0$.
- A is distributive if

$$\omega_A(b_1, \dots, b_{i-1}, \bigoplus_{j=1}^n a_j, b_{i+1}, \dots, b_m) = \bigoplus_{j=1}^n \omega_A(b_1, \dots, b_{i-1}, a_j, b_{i+1}, \dots, b_m)$$

holds for every $m, n \ge 0, \omega \in \Omega^{(m)}, b_1, \dots, b_m \in A, 1 \le i \le m$, and $a_1, \dots, a_n \in A$. In particular, $\omega_A(\dots, 0, \dots,) = 0$.

Operations on Ops(A)

Ops(*A*) (Ops^{*k*}(*A*)) is the set of operations (*k*-ary operations) on *A*. Let $(A, \oplus, 0, \Omega)$ be an M-monoid and $k \ge 0$.

- Let $\omega_1, \omega_2 \in \operatorname{Ops}^k(A)$. The sum of ω_1 and ω_2 is the *k*-ary operation $\omega_1 \oplus \omega_2$ that is defined, for every $\vec{a} \in A^k$, by $(\omega_1 \oplus \omega_2)(\vec{a}) = \omega_1(\vec{a}) \oplus \omega_2(\vec{a})$.
- Let ω ∈ Ops^k(A) and ω_j ∈ Ops^{l_j}(A) with l_j ≥ 0 for every 1 ≤ j ≤ k. The composition of ω with (ω₁,..., ω_k) is the (l₁ + ··· + l_k)-ary operation ω(ω₁,..., ω_k) that is defined by

 $(\omega(\omega_1,\ldots,\omega_k))(\vec{a_1},\ldots,\vec{a_k}) = \omega(\omega_1(\vec{a_1}),\ldots,\omega_k(\vec{a_k}))$

for every $\vec{a_j} \in A^{l_j}$ with $1 \le j \le k$.

 $(\operatorname{Ops}^{k}(A), \oplus, \mathbf{0}^{k})$ is a commutative monoid for every $k \geq 0$, for k = 0 is isomorphic to the monoid $(A, \oplus, \mathbf{0})$.

Sum is left- and right- distributive, and composition is associative.

Uniform tree valuations

 $|t|_Z$ is the number of occurrences of variables of Z in t

Uvals (Σ, Z, A) is the class of mappings $S : T_{\Sigma}(Z) \to Ops(A)$ such that the arity of (S, t) is $|t|_Z$. Such mappings are called <u>uniform tree valuations</u> over Σ, Z and A.

- Hence $\text{Uvals}(\Sigma, \emptyset, A) = A \langle\!\langle T_{\Sigma} \rangle\!\rangle$.
- $(\widetilde{\mathbf{0}}, t) = 0^{|t|_Z}$ for every $t \in T_{\Sigma}(Z)$.
- The sum of $S_1, S_2 \in \text{Uvals}(\Sigma, Z, A)$ is the uniform tree valuation $S_1 \oplus^{\mathrm{u}} S_2$ defined by $(S_1 \oplus^{\mathrm{u}} S_2, t) = (S_1, t) \oplus (S_2, t)$ for every $t \in T_{\Sigma}(Z)$.
- $(\text{Uvals}(\Sigma, Z, A), \oplus^{\mathrm{u}}, \widetilde{\mathbf{0}})$ is a commutative monoid; for $Z = \emptyset$ it is nothing but $(A\langle\!\langle T_{\Sigma} \rangle\!\rangle, \oplus, \widetilde{\mathbf{0}})$.
- For $S \in \text{Uvals}(\Sigma, Z, A)$ we write $S = \bigoplus_{t \in T_{\Sigma}(Z)}^{u}(S, t).t$.

Weighted tree automata (wta) over M-monoids

Syntax

A system $M = (Q, \Sigma, Z, A, F, \mu, \nu)$ (over Σ, Z and A)

- Q, Σ, Z as before,
- $(A, \oplus, 0, \Omega)$ is an M-monoid,
- $F: Q \rightarrow \Omega^{(1)}$ is the root weight,
- $\mu = (\mu_m \mid m \ge 0)$ is the family of transition mappings with $\mu_m : Q^m \times \Sigma^{(m)} \times Q \to \Omega^{(m)}$,
- $\nu: Z \times Q \rightarrow \Omega^{(1)}$, the variable assignment.

Such a wta recognizes a <u>uniform tree valuation</u>, i.e., a mapping $S_M : T_{\Sigma}(Z) \to \text{Ops}(A)$ in $\text{Uvals}(\Sigma, Z, A)$.

In case $Z = \emptyset$ it recognizes a tree series in $A\langle\!\langle T_{\Sigma} \rangle\!\rangle$.

Wta over M-monoids

Semantics

 $M = (Q, \Sigma, Z, A, F, \mu, \nu)$ a wta over the M-monoid A and $t \in T_{\Sigma}(Z)$

- a run of M on t is a mapping $r: pos(t) \rightarrow Q$
- the set of runs of M on t is $R_M(t)$
- for $w \in \text{pos}(t)$, the weight wt(t, r, w) of w in t under r
 - if t(w) = z for some $z \in Z$, then $wt(t, r, w) = \nu(z, r(w))$
 - otherwise (if $t(w) = \sigma$ for some $\sigma \in \Sigma^{(k)}, k \ge 0$) wt $(t, r, w) = \mu_k(r(w1), \ldots, r(wk), t(w), r(w))(wt(t, r, w1), \ldots, wt(t, r, wk))$
 - the weight of r is $wt(t, r) = wt(t, r, \varepsilon)$.

The uniform tree valuation $S_M: T_{\Sigma}(Z) \to A$ recognized by M is defined by

$$S_M(t) = \bigoplus_{r \in R_M(t)} F(r(\varepsilon))(\mathrm{wt}(t,r)).$$

An example of a wta over M-monoids

The tree series height $: T_{\Sigma} \to \mathbb{N}$ can be recognized by

 $M = (Q, \Sigma, A, F, \mu),$

where

- $Q = \{q\},$
- $A = (\mathbb{N}, -, -, \Omega)$ with $\{1 + \max\{n_1, \dots, n_k\} \mid k \ge 0\} \subseteq \Omega$,
- $F(q) = \mathrm{id}_{\mathbb{N}}$, and
- $\mu_0(\alpha, q) = 0$ and for every $k \ge 1$ and $\sigma \in \Sigma^{(k)}$, let $\mu_k(q \dots q, \sigma, q) = 1 + \max\{n_1, \dots, n_k\}.$

Then S_M = height.

Rational operations on $Uvals(\Sigma, Z, A)$

- 1. The sum \oplus^{u} : $(S_1 \oplus^{u} S_2, t) = (S_1, t) \oplus (S_2, t)$.
- 2. The *top-concatenation*: for $k \ge 0$, $\sigma \in \Sigma^{(k)}$, $\omega \in \Omega^{(k)}$, and $S_1, \ldots, S_k \in \text{Uvals}(\Sigma, Z, A)$, we define

$$\operatorname{top}_{\sigma,\omega}(S_1,\ldots,S_k) = \bigoplus_{t_1,\ldots,t_k \in T_{\Sigma}(Z)}^{\mathbf{u}} \omega((S_1,t_1),\ldots,(S_k,t_k)).\sigma(t_1,\ldots,t_k).$$

3. The *z*-concatenation: for every $z \in Z$ and $S, S' \in Uvals(\Sigma, Z, A)$, we define

$$S_{z}S' = \bigoplus_{\substack{s \in T_{\Sigma}(Z), \, l = |s|_{z} \\ t_{1}, \dots, t_{l} \in T_{\Sigma}(Z)}}^{u} \left((S, s) \circ_{s, z} ((S', t_{1}), \dots, (S', t_{l})) \right) . s[z \leftarrow (t_{1}, \dots, t_{l})] .$$

Rational operations on $Uvals(\Sigma, Z, A)$

- 4. The *z*-KLEENE-*star*: for every $z \in Z$ and $S \in \text{Uvals}(\Sigma, Z, A)$ we define:
 - (i) $S_z^0 = \widetilde{\mathbf{0}}$; and
 - (ii) $S_z^{n+1} = (S \cdot_z S_z^n) \oplus^{\mathrm{u}} \mathrm{id}_A.z.$

Then, the *z*-KLEENE star S_z^* of *S* is defined as follows:

If S is z-proper, i.e., (S, z) = 0, then

 $(S_z^*, t) = (S_z^{\operatorname{height}(t)+1}, t)$

for every $t \in T_{\Sigma}(Z)$, otherwise $S_z^* = \widetilde{\mathbf{0}}$.

Rational expressions (over Σ, Z and A)

RatExp(Σ , Z, A) (over Σ , Z, and A) is the smallest set R satisfying Conditions (i)–(v). For every ratexp $\eta \in \text{RatExp}(\Sigma, Z, A)$ we define its semantics $[\![\eta]\!] \in \text{Uvals}(\Sigma, Z, A)$ simultaneously.

- (i) For every $z \in Z$ and $\omega \in \Omega^{(1)}$ we have $\omega . z \in R$ and $\llbracket \omega . z \rrbracket = \omega . z$.
- (ii) For every $k \ge 0$, $\sigma \in \Sigma^{(k)}$, $\omega \in \Omega^{(k)}$, and rational expressions $\eta_1, \ldots, \eta_k \in R$ we have $\operatorname{top}_{\sigma,\omega}(\eta_1, \ldots, \eta_k) \in R$ and $\llbracket \operatorname{top}_{\sigma,\omega}(\eta_1, \ldots, \eta_k) \rrbracket = \operatorname{top}_{\sigma,\omega}(\llbracket \eta_1 \rrbracket, \ldots, \llbracket \eta_k \rrbracket).$
- (iii) For every $\eta_1, \eta_2 \in R$ we have $\eta_1 + \eta_2 \in R$ and $\llbracket \eta_1 + \eta_2 \rrbracket = \llbracket \eta_1 \rrbracket \oplus^{\mathrm{u}} \llbracket \eta_2 \rrbracket$.
- (iv) For every $\eta_1, \eta_2 \in R$ and $z \in Z$ we have $\eta_1 \cdot_z \eta_2 \in R$ and $\llbracket \eta_1 \cdot_z \eta_2 \rrbracket = \llbracket \eta_1 \rrbracket \cdot_z \llbracket \eta_2 \rrbracket$.
- (v) For every $\eta \in R$ and $z \in Z$ we have $\eta_z^* \in R$ and $\llbracket \eta_z^* \rrbracket = \llbracket \eta \rrbracket_z^*$.

Rational tree valuations (over Σ, Z and A)

We call $S \in \text{Uvals}(\Sigma, Z, A)$ rational, if there exists a rational expression $\eta \in \text{RatExp}(\Sigma, Z, A)$ such that $[\![\eta]\!] = S$.

 $\operatorname{Rat}(\Sigma, Z, A)$ is the class of rational uniform tree valuations over Σ, Z and A.

Then $\operatorname{Rat}(\Sigma, Z, A)$ is the smallest class of uniform tree valuations which contains the uniform tree valuation $\omega.z$ for every $z \in Z$ and $\omega \in \Omega^{(1)}$ and is closed under the rational operations.

Kleene theorem for wta over M-monoids

a) Recognizable \Rightarrow rational:

Theorem. If *A* is distributive, then for every wta $M = (Q, \Sigma, Z, A, F, \mu, \nu)$ there exists a rational expression $\eta \in \operatorname{RatExp}(\Sigma, Z \cup Q, A)$ such that $S_M = \llbracket \eta \rrbracket |_{T_{\Sigma}(Z)}$.

Hence we have $\operatorname{Rec}(\Sigma, Z, A) \subseteq \operatorname{Rat}(\Sigma, \operatorname{fin}, A)|_{T_{\Sigma}(Z)}$, where

$$\operatorname{Rat}(\Sigma, \operatorname{fin}, A) = \bigcup_{Z \text{ finite set}} \operatorname{Rat}(\Sigma, Z, A).$$

Kleene theorem for wta over M-monoids

The M-monoid $(A, \oplus, 0, \Omega)$ is

- sum closed, if $\omega_1 \oplus \omega_2 \in \Omega^{(k)}$ for every $k \ge 0$ and $\omega_1, \omega_2 \in \Omega^{(k)}$.
- $(1, \star)$ -composition closed, if $\omega(\omega') \in \Omega^{(k)}$ for every $k \ge 0, \omega \in \Omega^{(1)}$, and $\omega' \in \Omega^{(k)}$.
- $(\star, 1)$ -composition closed, if $\omega(\omega_1, \ldots, \omega_k) \in \Omega^{(k)}$ for every $k \ge 0$, $\omega \in \Omega^{(k)}$, and $\omega_1, \ldots, \omega_k \in \Omega^{(1)}$.

b) Rational \Rightarrow recognizable:

Theorem. Let *A* be a distributive, $(1, \star)$ -composition closed and sum closed. Then $\operatorname{Rec}(\Sigma, Z, A)$ contains the uniform tree valuation $\omega.z$ for every $z \in Z$ and $\omega \in \Omega^{(1)}$, and it is closed under the rational operations. Hence, $\operatorname{Rat}(\Sigma, Z, A) \subseteq \operatorname{Rec}(\Sigma, Z, A)$.

Kleene theorem for wta over M-monoids

In case $Z = \emptyset$:

Theorem. For every $(1, \star)$ -composition closed and sum closed DM-monoid A, we have $\operatorname{Rec}(\Sigma, \emptyset, A) = \operatorname{Rat}(\Sigma, \operatorname{fin}, A)|_{T_{\Sigma}}$.

Proof. We have

 $\operatorname{Rec}(\Sigma, \emptyset, \underline{A}) \subseteq \operatorname{Rat}(\Sigma, \operatorname{fin}, A)|_{T_{\Sigma}} \subseteq \operatorname{Rec}(\Sigma, \operatorname{fin}, A)|_{T_{\Sigma}} \subseteq \operatorname{Rec}(\Sigma, \emptyset, A)$

where the last inclusion can be seen as follows. Let $S \in \text{Rec}(\Sigma, \text{fin}, A)|_{T_{\Sigma}}$. Thus, there exist a wta $M = (Q, \Sigma, Z, A, F, \mu, \nu)$ such that $S = S_M|_{T_{\Sigma}}$. It is easy to see that for the wta $N = (Q, \Sigma, \emptyset, A, F, \mu, \emptyset)$ we have that $S_N = S_M|_{T_{\Sigma}}$. Thus $S \in \text{Rec}(\Sigma, \emptyset, A)$.

Wta over (arbitrary) semirings

 $M = (Q, \Sigma, Z, K, F, \delta, \nu)$ a wta, K is a semiring, $t \in T_{\Sigma}(Z)$

- a run of M on t is a mapping $r: pos(t) \rightarrow Q$
- the set of runs of M on t is $R_M(t)$
- for $w \in pos(t)$, the weight wt(t, r, w) of w in t under r
 - if t(w) = z for some $z \in Z$, then $wt(t, r, w) = \nu(z, r(w))$
 - otherwise (if $t(w) = \sigma$ for some $\sigma \in \Sigma^{(k)}, k \ge 0$) wt $(t, r, w) = \delta_k(r(w1), \dots, r(wk), t(w), r(w))$
 - the weight of r is $wt(t, r) = \prod_{w \in pos(t)} wt(t, r, w)$, where the order of the product is the postorder tree walk.

The tree series $S_M : T_{\Sigma}(Z) \to K$ recognized by M is

$$S_M(t) = \sum_{r \in R_M(t)} \operatorname{wt}(t, r) \cdot F(r(\varepsilon)).$$

The class of recognizable tree series by such wta: $\operatorname{Rec}_{\mathrm{sr}}(\Sigma, Z, K)$.

Semiring M-monoids

An arbitrary semiring $(K, \oplus, \odot, 0, 1)$ can be simulated by an appropriate M-monoid:

for every $a \in K$, let $\operatorname{mul}_a^{(k)} : K^k \to K$ be the mapping defined as follows: for every $a_1, \ldots, a_k \in K$ we have $\operatorname{mul}_a^{(k)}(a_1, \ldots, a_k) = a_1 \odot \cdots \odot a_k \odot a$.

Moreover, let $\underline{D}(K) = (K, \oplus, \mathbf{0}, \Omega)$, where $\Omega^{(k)} = {\text{mul}_a^{(k)} \mid a \in K}$.

Then $\underline{D}(K)$ is a distributive, sum closed, and $(1, \star)$ -composition closed M-monoid. (id_{*K*} = mul₁⁽¹⁾ and 0^{*k*} = mul₀^(k).)

Theorem. $\operatorname{Rec}_{\operatorname{sr}}(\Sigma, Z, K) = \operatorname{Rec}(\Sigma, Z, \underline{D}(K)).$

A Kleene theorem for wta over arbitrary semirings

Theorem. $\operatorname{Rec}_{\operatorname{sr}}(\Sigma, K) = \operatorname{Rat}(\Sigma, \operatorname{fin}, \underline{D}(K))|_{T_{\Sigma}}$ for every semiring K.

Proof.

 $\operatorname{Rec}_{\operatorname{sr}}(\Sigma, K) = \operatorname{Rec}(\Sigma, \emptyset, \underline{D}(K)) = \operatorname{Rat}(\Sigma, \operatorname{fin}, \underline{D}(K))|_{T_{\Sigma}}$

Rational tree series over a semiring K

The set of rational tree series expressions over Σ , Z and K, denoted by RatExp (Σ, Z, K) , is the smallest set R which satisfies Conditions (1)-(6). For every $\eta \in \text{RatExp}(\Sigma, Z, K)$ we define $[\![\eta]\!]_{\text{sr}} \in K\langle\!\langle T_{\Sigma}(Z) \rangle\!\rangle$ simultaneously.

- 1. For every $z \in Z$, the expression $z \in R$, and $[\![z]\!]_{sr} = 1.z$.
- 2. For every $k \ge 0$, $\sigma \in \Sigma^{(k)}$, and $\eta_1, \ldots, \eta_k \in R$, the expression $\sigma(\eta_1, \ldots, \eta_k) \in R$ and $[\![\sigma(\eta_1, \ldots, \eta_k)]\!]_{sr} = top_{\sigma}([\![\eta_1]\!]_{sr}, \ldots, [\![\eta_k]\!]_{sr}).$
- 3. For every $\eta \in R$ and $a \in K$, the expression $(a\eta) \in R$ and $[(a\eta)]_{sr} = a[\eta]_{sr}$.
- 4. For every $\eta_1, \eta_2 \in R$, the expression $(\eta_1 + \eta_2) \in R$ and $[(\eta_1 + \eta_2)]_{sr} = [\eta_1]_{sr} + [\eta_2]_{sr}$.
- 5. For every $\eta_1, \eta_2 \in R$ and $z \in Z$, the expression $(\eta_1 \circ_z \eta_2) \in R$ and $[(\eta_1 \circ_z \eta_2)]_{sr} = [\eta_1]_{sr} \circ_z [\eta_2]_{sr}$.
- 6. For every $\eta \in R$ and $z \in Z$, the expression $(\eta_z^*) \in R$ and $\llbracket(\eta_z^*)\rrbracket_{\mathrm{sr}} = \llbracket\eta\rrbracket_{\mathrm{sr},z}^*$.

The class of rational tree series: $\operatorname{Rat}_{\operatorname{sr}}(\Sigma, Z, K)$.

A Kleene theorem for wta over commutative semirings

We can relate rational tree series over Σ , Z, and K and rational uniform tree valuations over Σ , Z, and $\underline{D}(\underline{K})$.

For this, define:

one : Umaps $(\Sigma, Z, \underline{D}(\underline{K})) \to K \langle\!\langle T_{\Sigma(Z)} \rangle\!\rangle$ as follows.

For every $S \in \text{Umaps}(\Sigma, Z, \underline{D}(\underline{K}))$ and $t \in T_{\Sigma \cup Z}$, let (one(S), t) = (S, t)(1, ..., 1), where the number of arguments 1 is $|t|_Z$.

Note that (one(S), t) = (S, t) for every $t \in T_{\Sigma}$. We extend one to classes in the usual way.

Lemma. For every <u>commutative</u> semiring K, we have Rat_{sr}(Σ, Z, K) = one(Rat($\Sigma, Z, \underline{D}(\underline{K})$)).

A Kleene theorem for wta over commutative semirings

Corollary. For every commutative semiring K, we have that $\operatorname{Rec}_{\operatorname{sr}}(\Sigma, K) = \operatorname{Rat}_{\operatorname{sr}}(\Sigma, \operatorname{fin}, K)|_{T_{\Sigma}}$.

Proof.

a) $\operatorname{Rat}_{\operatorname{sr}}(\Sigma, Z, K)|_{T_{\Sigma}} = \operatorname{one}(\operatorname{Rat}(\Sigma, Z, \underline{D}(\underline{K})))|_{T_{\Sigma}} = \operatorname{Rat}(\Sigma, Z, \underline{D}(\underline{K}))|_{T_{\Sigma}}$

Then

 $\operatorname{Rat}_{\operatorname{sr}}(\Sigma, \operatorname{fin}, \underline{K})|_{T_{\Sigma}} = \operatorname{Rat}(\Sigma, \operatorname{fin}, \underline{D}(\underline{K}))|_{T_{\Sigma}}$

b) We already proved

 $\operatorname{Rec}_{\operatorname{sr}}(\Sigma, K) = \operatorname{Rec}(\Sigma, \emptyset, \underline{D}(K)) = \operatorname{Rat}(\Sigma, \operatorname{fin}, \underline{D}(K))|_{T_{\Sigma}}$

Kleene theorem for wta over commutative semirings

Lemma. For every commutative semiring K, we have $\operatorname{Rat}_{\operatorname{sr}}(\Sigma, Z, K) = \operatorname{one}(\operatorname{Rat}(\Sigma, Z, \underline{D}(\underline{K}))).$

Proof. We redefine rational expressions over Σ , Z and $\underline{D(K)}$:

 $\operatorname{RatExp}'(\Sigma, Z, \underline{D}(\underline{K}))$ and $\operatorname{Rat}'(\Sigma, Z, \underline{D}(\underline{K}))$

- (i) For every $z \in Z$ we have $z \in R$ and $\llbracket z \rrbracket = \operatorname{mul}_1^{(1)} . z$.
- (ii) For every $k \ge 0$, $\sigma \in \Sigma^{(k)}$ and rational expressions $\eta_1, \ldots, \eta_k \in R$ we have $\sigma(\eta_1, \ldots, \eta_k) \in R$ and $\sigma(\eta_1, \ldots, \eta_k) = \operatorname{top}_{\sigma, \operatorname{mul}_1^{(k)}}(\llbracket \eta_1 \rrbracket, \ldots, \llbracket \eta_k \rrbracket)$.
- (iii) For every $\eta \in R$ and $a \in K$, the expression $(a\eta) \in R$ and $\llbracket (a\eta) \rrbracket = \operatorname{mul}_a^{(1)} \circ \llbracket \eta \rrbracket$.
- (iv) For every $\eta_1, \eta_2 \in R$ we have $\eta_1 + \eta_2 \in R$ and $\llbracket \eta_1 + \eta_2 \rrbracket = \llbracket \eta_1 \rrbracket \oplus^{\mathrm{u}} \llbracket \eta_2 \rrbracket$.
- (v) For every $\eta_1, \eta_2 \in R$ and $z \in Z$ we have $\eta_1 \cdot_z \eta_2 \in R$ and $\llbracket \eta_1 \cdot_z \eta_2 \rrbracket = \llbracket \eta_1 \rrbracket \cdot_z \llbracket \eta_2 \rrbracket$.
- (vi) For every $\eta \in R$ and $z \in Z$ we have $\eta_z^* \in R$ and $\llbracket \eta_z^* \rrbracket = \llbracket \eta \rrbracket_z^*$.

Kleene theorem for wta over commutative semirings

Then

 $\operatorname{Rat}'(\Sigma, Z, \underline{D}(\underline{K})) = \operatorname{Rat}(\Sigma, Z, \underline{D}(\underline{K}))$ and $\operatorname{RatExp}'(\Sigma, Z, \underline{D}(\underline{K})) = \operatorname{RatExp}(\Sigma, Z, K).$

Thus we can prove by induction on η : for every $\eta \in \operatorname{RatExp}'(\Sigma, Z, \underline{D}(\underline{K}))$, $t \in T_{\Sigma}(Z)$, and $a_1, \ldots, a_n \in K$, we have that

 $(\llbracket \eta \rrbracket, t)(a_1, \ldots, a_n) = (\llbracket \eta \rrbracket_{\mathrm{sr}}, t) \odot a_1 \odot \ldots \odot a_n.$

This implies that for every $\eta \in \operatorname{RatExp}'(\Sigma, Z, \underline{D}(\underline{K}))$, we have $[\![\eta]\!]_{\operatorname{sr}} = \operatorname{one}([\![\eta]\!])$, where $[\![\eta]\!]_{\operatorname{sr}}$ denotes the semiring semantics of η .

References

- [AB87] A. Alexandrakis and S. Bozapalidis. Weighted grammars and Kleene's theorem. *Information Processing Letters*, 24(1):1–4, January 1987.
 - [1] M. Droste, Chr. Pech, and H. Vogler. A Kleene theorem for weighted tree automata. *Theory Comput. Syst.*, 38:1–38, 2005.
 - [2] Z. Ésik and W. Kuich. Formal tree series. J. Automata, Languages and Combinatorics, 8:219–285, 2003.
 - [3] Z. Fülöp, A. Maletti, and H. Vogler. A Kleene Theorem for Weighted Tree Automata over Distributive Multioperator Monoids (with A. Maletti and H. Vogler), Theory of Computing Systems, 44 (2009) 455-499.
 - [4] W. Kuich. Linear systems of equations and automata on distributive multioperator monoids. In *Contributions to General Algebra 12 Proceedings of the 58th Workshop on General Algebra "58. Arbeitstagung Allgemeine Algebra", Vienna University of Technology. June 3-6, 1999*, pages 1–10. Verlag Johannes Heyn, 1999.

 [5] A. Maletti. Relating tree series transducers and weighted tree automata. *Int. J. of Foundations of Computer Science*, 16:723–741, 2005.