Weighted Tree Automata II. A Kleene theorem for wta over M-monoids

Zoltán Fülöp
University of Szeged
Department of Foundations of Computer Science
fulop@inf.u-szeged.hu

November 10, 2009

Contents

- Multioperator monoids (M-monoids)
- Uniform tree valuations
- Wta over M-monoids, recognizable uniform tree valuations
- Rational operations, rational uniform tree valuations
- Kleene theorem for recognizable uniform tree valuations
- Kleene theorem for (non commutative) semirings
- Kleene theorem for commutative semirings is a corollary
- References

Multioperator monoid

A multioperator monoid (for short: M-monoid) $(A, \oplus, 0, \Omega)$ consists of

- a commutative monoid $(A, \oplus, 0)$ and
- an Ω-algebra (A, Ω)
- with $\operatorname{id}_{A} \in \Omega^{(1)}$ and $0^{m} \in \Omega^{(m)}$ for $m \geq 0$.
A is distributive if

$$
\omega_{A}\left(b_{1}, \ldots, b_{i-1}, \bigoplus_{j=1}^{n} a_{j}, b_{i+1}, \ldots, b_{m}\right)=\bigoplus_{j=1}^{n} \omega_{A}\left(b_{1}, \ldots, b_{i-1}, a_{j}, b_{i+1}, \ldots, b_{m}\right)
$$

holds for every $m, n \geq 0, \omega \in \Omega^{(m)}, b_{1}, \ldots, b_{m} \in A, 1 \leq i \leq m$, and $a_{1}, \ldots, a_{n} \in A$. In particular, $\omega_{A}(\ldots, 0, \ldots)=$,0 .

Operations on $\operatorname{Ops}(A)$

$\operatorname{Ops}(A)\left(\mathrm{Ops}^{k}(A)\right)$ is the set of operations (k-ary operations) on A.
Let $(A, \oplus, 0, \Omega)$ be an M-monoid and $k \geq 0$.

- Let $\omega_{1}, \omega_{2} \in \operatorname{Ops}^{k}(A)$. The sum of ω_{1} and ω_{2} is the k-ary operation $\omega_{1} \oplus \omega_{2}$ that is defined, for every $\vec{a} \in A^{k}$, by $\left(\omega_{1} \oplus \omega_{2}\right)(\vec{a})=\omega_{1}(\vec{a}) \oplus \omega_{2}(\vec{a})$.
- Let $\omega \in \operatorname{Ops}^{k}(A)$ and $\omega_{j} \in \operatorname{Ops}^{l_{j}}(A)$ with $l_{j} \geq 0$ for every $1 \leq j \leq k$. The composition of ω with $\left(\omega_{1}, \ldots, \omega_{k}\right)$ is the $\left(l_{1}+\cdots+l_{k}\right)$-ary operation $\omega\left(\omega_{1}, \ldots, \omega_{k}\right)$ that is defined by

$$
\left(\omega\left(\omega_{1}, \ldots, \omega_{k}\right)\right)\left(\overrightarrow{a_{1}}, \ldots, \overrightarrow{a_{k}}\right)=\omega\left(\omega_{1}\left(\overrightarrow{a_{1}}\right), \ldots, \omega_{k}\left(\overrightarrow{a_{k}}\right)\right)
$$

for every $\overrightarrow{a_{j}} \in A^{l_{j}}$ with $1 \leq j \leq k$.
(Ops ${ }^{k}(A), \oplus, \mathbf{0}^{k}$) is a commutative monoid for every $k \geq 0$, for $k=0$ is isomorphic to the monoid $(A, \oplus, \mathbf{0})$.

Sum is left- and right- distributive, and composition is associative.

Uniform tree valuations

$|t|_{Z}$ is the number of occurrences of variables of Z in t
$\operatorname{Uvals}(\Sigma, Z, A)$ is the class of mappings $S: T_{\Sigma}(Z) \rightarrow \operatorname{Ops}(A)$ such that the arity of (S, t) is $|t|_{z}$. Such mappings are called uniform tree valuations over Σ, Z and A.

- Hence $\operatorname{Uvals}(\Sigma, \emptyset, A)=A\left\langle\left\langle T_{\Sigma}\right\rangle\right\rangle$.
- $(\widetilde{\mathbf{0}}, t)=0^{|t| z}$ for every $t \in T_{\Sigma}(Z)$.
- The sum of $S_{1}, S_{2} \in \operatorname{Uvals}(\Sigma, Z, A)$ is the uniform tree valuation $S_{1} \oplus^{\mathrm{u}} S_{2}$ defined by $\left(S_{1} \oplus^{\mathrm{u}} S_{2}, t\right)=\left(S_{1}, t\right) \oplus\left(S_{2}, t\right)$ for every $t \in T_{\Sigma}(Z)$.
- (Uvals $\left.(\Sigma, Z, A), \oplus^{\mathrm{u}}, \widetilde{\mathbf{0}}\right)$ is a commutative monoid; for $Z=\emptyset$ it is nothing but $\left(A\left\langle\left\langle T_{\Sigma}\right\rangle\right\rangle, \oplus, \widetilde{\mathbf{0}}\right)$.
- For $S \in \operatorname{Uvals}(\Sigma, Z, A)$ we write $S=\bigoplus_{t \in T_{\Sigma}(Z)}^{\mathrm{u}}(S, t) . t$.

Weighted tree automata (wta) over M-monoids

Syntax

A system $M=(Q, \Sigma, Z, A, F, \mu, \nu)($ over Σ, Z and $A)$

- Q, Σ, Z as before,
- $(A, \oplus, 0, \Omega)$ is an M-monoid,
- $F: Q \rightarrow \Omega^{(1)}$ is the root weight,
- $\mu=\left(\mu_{m} \mid m \geq 0\right)$ is the family of transition mappings with
$\mu_{m}: Q^{m} \times \Sigma^{(m)} \times Q \rightarrow \Omega^{(m)}$,
- $\nu: Z \times Q \rightarrow \Omega^{(1)}$, the variable assignment.

Such a wta recognizes a uniform tree valuation, i.e., a mapping $S_{M}: T_{\Sigma}(Z) \rightarrow \operatorname{Ops}(A)$ in $\operatorname{Uvals}(\Sigma, Z, A)$.

In case $Z=\emptyset$ it recognizes a tree series in $A\left\langle\left\langle T_{\Sigma}\right\rangle\right\rangle$.

Wta over M-monoids

Semantics

$M=(Q, \Sigma, Z, A, F, \mu, \nu)$ a wta over the M-monoid A and $t \in T_{\Sigma}(Z)$

- a run of M on t is a mapping $r: \operatorname{pos}(t) \rightarrow Q$
- the set of runs of M on t is $R_{M}(t)$
- for $w \in \operatorname{pos}(t)$, the weight $\mathrm{wt}(t, r, w)$ of w in t under r
- if $t(w)=z$ for some $z \in Z$, then $\mathrm{wt}(t, r, w)=\nu(z, r(w))$
- otherwise (if $t(w)=\sigma$ for some $\sigma \in \Sigma^{(k)}, k \geq 0$) $\mathrm{wt}(t, r, w)=$ $\mu_{k}(r(w 1), \ldots, r(w k), t(w), r(w))(\mathrm{wt}(t, r, w 1), \ldots, \mathrm{wt}(t, r, w k))$
- the weight of r is $\mathrm{wt}(t, r)=\mathrm{wt}(t, r, \varepsilon)$.

The uniform tree valuation $S_{M}: T_{\Sigma}(Z) \rightarrow A$ recognized by M is defined by

$$
S_{M}(t)=\bigoplus_{r \in R_{M}(t)} F(r(\varepsilon))(\mathrm{wt}(t, r))
$$

An example of a wta over M-monoids

The tree series height : $T_{\Sigma} \rightarrow \mathbb{N}$ can be recognized by

$$
M=(Q, \Sigma, A, F, \mu)
$$

where

- $Q=\{q\}$,
- $A=(\mathbb{N},-,-, \Omega)$ with $\left\{1+\max \left\{n_{1}, \ldots, n_{k}\right\} \mid k \geq 0\right\} \subseteq \Omega$,
- $F(q)=i d_{\mathbb{N}}$, and
- $\mu_{0}(\alpha, q)=0$ and for every $k \geq 1$ and $\sigma \in \Sigma^{(k)}$, let $\mu_{k}(q \ldots q, \sigma, q)=1+\max \left\{n_{1}, \ldots, n_{k}\right\}$.

Then $S_{M}=$ height.

Rational operations on $\operatorname{Uvals}(\Sigma, Z, A)$

1. The sum $\oplus^{\mathrm{u}}:\left(S_{1} \oplus^{\mathrm{u}} S_{2}, t\right)=\left(S_{1}, t\right) \oplus\left(S_{2}, t\right)$.
2. The top-concatenation: for $k \geq 0, \sigma \in \Sigma^{(k)}, \omega \in \Omega^{(k)}$, and $S_{1}, \ldots, S_{k} \in \operatorname{Uvals}(\Sigma, Z, A)$, we define

$$
\operatorname{top}_{\sigma, \omega}\left(S_{1}, \ldots, S_{k}\right)=\bigoplus_{t_{1}, \ldots, t_{k} \in T_{\Sigma}(Z)}^{\mathrm{u}} \omega\left(\left(S_{1}, t_{1}\right), \ldots,\left(S_{k}, t_{k}\right)\right) \cdot \sigma\left(t_{1}, \ldots, t_{k}\right) .
$$

3. The z-concatenation: for every $z \in Z$ and $S, S^{\prime} \in \operatorname{Uvals}(\Sigma, Z, A)$, we define

$$
S \cdot \cdot_{z} S^{\prime}=\bigoplus_{\substack{s \in T_{\Sigma}(Z), l=|s|_{z} \\ t_{1}, \ldots, t_{l} \in T_{\Sigma}(Z)}}^{u}\left((S, s) o_{s, z}\left(\left(S^{\prime}, t_{1}\right), \ldots,\left(S^{\prime}, t_{l}\right)\right)\right) \cdot s\left[z \leftarrow\left(t_{1}, \ldots, t_{l}\right)\right] .
$$

Rational operations on $\operatorname{Uvals}(\Sigma, Z, A)$
4. The z-KLEENE-star: for every $z \in Z$ and $S \in \operatorname{Uvals}(\Sigma, Z, A)$ we define:
(i) $S_{z}^{0}=\widetilde{\mathbf{0}}$; and
(ii) $S_{z}^{n+1}=\left(S \cdot{ }_{z} S_{z}^{n}\right) \oplus^{u} \mathrm{id}_{A} . z$.

Then, the z-Kleene star S_{z}^{*} of S is defined as follows:
If S is z-proper, i.e., $(S, z)=\mathbf{0}$, then

$$
\left(S_{z}^{*}, t\right)=\left(S_{z}^{\text {height }(t)+1}, t\right)
$$

for every $t \in T_{\Sigma}(Z)$, otherwise $S_{z}^{*}=\widetilde{\mathbf{0}}$.

Rational expressions (over Σ, Z and A)

$\operatorname{RatExp}(\Sigma, Z, A)$ (over Σ, Z, and A) is the smallest set R satisfying
Conditions (i)-(v). For every ratexp $\eta \in \operatorname{Rat} \operatorname{Exp}(\Sigma, Z, A)$ we define its semantics $\llbracket \eta \rrbracket \in \operatorname{Uvals}(\Sigma, Z, A)$ simultaneously.
(i) For every $z \in Z$ and $\omega \in \Omega^{(1)}$ we have $\omega \cdot z \in R$ and $\llbracket \omega . z \rrbracket=\omega . z$.
(ii) For every $k \geq 0, \sigma \in \Sigma^{(k)}, \omega \in \Omega^{(k)}$, and rational expressions

$$
\eta_{1}, \ldots, \eta_{k} \in R \text { we have } \operatorname{top}_{\sigma, \omega}\left(\eta_{1}, \ldots, \eta_{k}\right) \in R \text { and }
$$

$$
\llbracket \operatorname{top}_{\sigma, \omega}\left(\eta_{1}, \ldots, \eta_{k}\right) \rrbracket=\operatorname{top}_{\sigma, \omega}\left(\llbracket \eta_{1} \rrbracket, \ldots, \llbracket \eta_{k} \rrbracket\right) .
$$

(iii) For every $\eta_{1}, \eta_{2} \in R$ we have $\eta_{1}+\eta_{2} \in R$ and $\llbracket \eta_{1}+\eta_{2} \rrbracket=\llbracket \eta_{1} \rrbracket \oplus^{\mathrm{u}} \llbracket \eta_{2} \rrbracket$.
(iv) For every $\eta_{1}, \eta_{2} \in R$ and $z \in Z$ we have $\eta_{1} \cdot z \eta_{2} \in R$ and $\llbracket \eta_{1} \cdot z \eta_{2} \rrbracket=\llbracket \eta_{1} \rrbracket \cdot z \llbracket \eta_{2} \rrbracket$.
(v) For every $\eta \in R$ and $z \in Z$ we have $\eta_{z}^{*} \in R$ and $\llbracket \eta_{z}^{*} \rrbracket=\llbracket \eta \rrbracket_{z}^{*}$.

Rational tree valuations (over Σ, Z and A)

We call $S \in \operatorname{Uvals}(\Sigma, Z, A)$ rational, if there exists a rational expression $\eta \in \operatorname{RatExp}(\Sigma, Z, A)$ such that $\llbracket \eta \rrbracket=S$.
$\operatorname{Rat}(\Sigma, Z, A)$ is the class of rational uniform tree valuations over Σ, Z and A.

Then $\operatorname{Rat}(\Sigma, Z, A)$ is the smallest class of uniform tree valuations which contains the uniform tree valuation $\omega . z$ for every $z \in Z$ and $\omega \in \Omega^{(1)}$ and is closed under the rational operations.

Kleene theorem for wta over M-monoids

a) Recognizable \Rightarrow rational:

Theorem. If A is distributive, then for every wta $M=(Q, \Sigma, Z, A, F, \mu, \nu)$ there exists a rational expression $\eta \in \operatorname{Rat} \operatorname{Exp}(\Sigma, Z \cup Q, A)$ such that $S_{M}=\left.\llbracket \eta \rrbracket\right|_{T_{\Sigma}(Z)}$.

Hence we have $\left.\operatorname{Rec}(\Sigma, Z, A) \subseteq \operatorname{Rat}(\Sigma, \operatorname{fin}, A)\right|_{T_{\Sigma}(Z)}$, where

$$
\operatorname{Rat}(\Sigma, \text { fin, } A)=\bigcup_{Z \text { finite set }} \operatorname{Rat}(\Sigma, Z, A)
$$

Kleene theorem for wta over M-monoids

The M-monoid $(A, \oplus, 0, \Omega)$ is

- sum closed, if $\omega_{1} \oplus \omega_{2} \in \Omega^{(k)}$ for every $k \geq 0$ and $\omega_{1}, \omega_{2} \in \Omega^{(k)}$.
- ($1, \star$)-composition closed, if $\omega\left(\omega^{\prime}\right) \in \Omega^{(k)}$ for every $k \geq 0, \omega \in \Omega^{(1)}$, and $\omega^{\prime} \in \Omega^{(k)}$.
- $(\star, 1)$-composition closed, if $\omega\left(\omega_{1}, \ldots, \omega_{k}\right) \in \Omega^{(k)}$ for every $k \geq 0$, $\omega \in \Omega^{(k)}$, and $\omega_{1}, \ldots, \omega_{k} \in \Omega^{(1)}$.
b) Rational \Rightarrow recognizable:

Theorem. Let A be a distributive, $(1, \star)$-composition closed and sum closed.
Then $\operatorname{Rec}(\Sigma, Z, A)$ contains the uniform tree valuation $\omega . z$ for every $z \in Z$ and $\omega \in \Omega^{(1)}$, and it is closed under the rational operations. Hence, $\operatorname{Rat}(\Sigma, Z, A) \subseteq \operatorname{Rec}(\Sigma, Z, A)$.

Kleene theorem for wta over M-monoids

In case $Z=\emptyset$:
Theorem. For every $(1, \star)$-composition closed and sum closed DM-monoid A, we have $\operatorname{Rec}(\Sigma, \emptyset, A)=\left.\operatorname{Rat}(\Sigma$, fin, $A)\right|_{T_{\Sigma}}$.

Proof. We have

$$
\left.\left.\operatorname{Rec}(\Sigma, \emptyset, \underline{A}) \subseteq \operatorname{Rat}(\Sigma, \operatorname{fin}, A)\right|_{T_{\Sigma}} \subseteq \operatorname{Rec}(\Sigma, \operatorname{fin}, A)\right|_{T_{\Sigma}} \subseteq \operatorname{Rec}(\Sigma, \emptyset, A)
$$

where the last inclusion can be seen as follows. Let $\left.S \in \operatorname{Rec}(\Sigma$, fin, $A)\right|_{T_{\Sigma}}$. Thus, there exist a wta $M=(Q, \Sigma, Z, A, F, \mu, \nu)$ such that $S=\left.S_{M}\right|_{T_{\Sigma}}$. It is easy to see that for the wta $N=(Q, \Sigma, \emptyset, A, F, \mu, \emptyset)$ we have that $S_{N}=\left.S_{M}\right|_{T_{\Sigma}}$. Thus $S \in \operatorname{Rec}(\Sigma, \emptyset, A)$.

Wta over (arbitrary) semirings

$M=(Q, \Sigma, Z, K, F, \delta, \nu)$ a wta, K is a semiring, $t \in T_{\Sigma}(Z)$

- a run of M on t is a mapping $r: \operatorname{pos}(t) \rightarrow Q$
- the set of runs of M on t is $R_{M}(t)$
- for $w \in \operatorname{pos}(t)$, the weight $\mathrm{wt}(t, r, w)$ of w in t under r
- if $t(w)=z$ for some $z \in Z$, then $\mathrm{wt}(t, r, w)=\nu(z, r(w))$
- otherwise (if $t(w)=\sigma$ for some $\sigma \in \Sigma^{(k)}, k \geq 0$) $\mathrm{wt}(t, r, w)=\delta_{k}(r(w 1), \ldots, r(w k), t(w), r(w))$
- the weight of r is $\mathrm{wt}(t, r)=\prod_{w \in \operatorname{pos}(t)} \mathrm{wt}(t, r, w)$, where the order of the product is the postorder tree walk.

The tree series $S_{M}: T_{\Sigma}(Z) \rightarrow K$ recognized by M is

$$
S_{M}(t)=\sum_{r \in R_{M}(t)} \mathrm{wt}(t, r) \cdot F(r(\varepsilon)) .
$$

The class of recognizable tree series by such wta: $\operatorname{Rec}_{\mathrm{sr}}(\Sigma, Z, K)$.

Semiring M-monoids

An arbitrary semiring $(K, \oplus, \odot, 0,1)$ can be simulated by an appropriate M-monoid:
for every $a \in K$, let $\operatorname{mul}_{a}^{(k)}: K^{k} \rightarrow K$ be the mapping defined as follows: for every $a_{1}, \ldots, a_{k} \in K$ we have $\operatorname{mul}_{a}^{(k)}\left(a_{1}, \ldots, a_{k}\right)=a_{1} \odot \cdots \odot a_{k} \odot a$.
Moreover, let $\underline{D}(K)=(K, \oplus, \mathbf{0}, \Omega)$, where $\Omega^{(k)}=\left\{\operatorname{mul}_{a}^{(k)} \mid a \in K\right\}$.
Then $\underline{D}(K)$ is a distributive, sum closed, and $(1, \star)$-composition closed M-monoid. (id ${ }_{K}=\operatorname{mul}_{1}^{(1)}$ and $0^{k}=\operatorname{mul}_{0}^{(k)}$.)

Theorem. $\operatorname{Rec}_{\mathrm{sr}}(\Sigma, Z, K)=\operatorname{Rec}(\Sigma, Z, \underline{D}(K))$.

A Kleene theorem for wta over arbitrary semirings

Theorem. $\operatorname{Rec}_{\mathrm{sr}}(\Sigma, K)=\left.\operatorname{Rat}(\Sigma$, fin, $\underline{D}(K))\right|_{T_{\Sigma}}$ for every semiring K.

Proof.

$$
\operatorname{Rec}_{\mathrm{sr}}(\Sigma, K)=\operatorname{Rec}(\Sigma, \emptyset, \underline{D}(K))=\left.\operatorname{Rat}(\Sigma, \operatorname{fin}, \underline{D}(K))\right|_{T_{\Sigma}}
$$

Rational tree series over a semiring K

The set of rational tree series expressions over Σ, Z and K, denoted by $\operatorname{RatExp}(\Sigma, Z, K)$, is the smallest set R which satisfies Conditions (1)-(6). For every $\eta \in \operatorname{RatExp}(\Sigma, Z, K)$ we define $\llbracket \eta \rrbracket_{\mathrm{sr}} \in K\left\langle\left\langle T_{\Sigma}(Z)\right\rangle\right\rangle$ simultaneously.

1. For every $z \in Z$, the expression $z \in R$, and $\llbracket z \rrbracket_{\mathrm{sr}}=1 . z$.
2. For every $k \geq 0, \sigma \in \Sigma^{(k)}$, and $\eta_{1}, \ldots, \eta_{k} \in R$, the expression $\sigma\left(\eta_{1}, \ldots, \eta_{k}\right) \in R$ and $\llbracket \sigma\left(\eta_{1}, \ldots, \eta_{k}\right) \rrbracket_{\mathrm{sr}}=\operatorname{top}_{\sigma}\left(\llbracket \eta_{1} \rrbracket_{\mathrm{sr}}, \ldots, \llbracket \eta_{k^{\prime}} \rrbracket_{\mathrm{sr}}\right)$.
3. For every $\eta \in R$ and $a \in K$, the expression $(a \eta) \in R$ and $\llbracket(a \eta) \rrbracket_{\mathrm{sr}}=a \llbracket \eta \rrbracket_{\mathrm{sr}}$.
4. For every $\eta_{1}, \eta_{2} \in R$, the expression $\left(\eta_{1}+\eta_{2}\right) \in R$ and $\llbracket\left(\eta_{1}+\eta_{2}\right) \rrbracket_{\mathrm{sr}}=\llbracket \eta_{1} \rrbracket_{\mathrm{sr}}+\llbracket \eta_{2} \rrbracket_{\mathrm{sr}}$.
5. For every $\eta_{1}, \eta_{2} \in R$ and $z \in Z$, the expression $\left(\eta_{1} \circ_{z} \eta_{2}\right) \in R$ and $\llbracket\left(\eta_{1} \circ_{z} \eta_{2}\right) \rrbracket_{\mathrm{sr}}=\llbracket \eta_{1} \rrbracket_{\mathrm{sr}} \circ_{z} \llbracket \eta_{2} \rrbracket_{\mathrm{sr}}$.
6. For every $\eta \in R$ and $z \in Z$, the expression $\left(\eta_{z}^{*}\right) \in R$ and $\llbracket\left(\eta_{z}^{*}\right) \rrbracket_{\mathrm{sr}}=\llbracket \eta \rrbracket_{\mathrm{sr}, z}^{*}$.

The class of rational tree series: $\operatorname{Rat}_{\mathrm{sr}}(\Sigma, Z, K)$.

A Kleene theorem for wta over commutative semirings

We can relate rational tree series over Σ, Z, and K and rational uniform tree valuations over Σ, Z, and $\underline{D}(\underline{K})$.

For this, define:
one : $\operatorname{Umaps}(\Sigma, Z, \underline{D}(\underline{K})) \rightarrow K\left\langle\left\langle T_{\Sigma(Z)}\right\rangle\right\rangle$ as follows.
For every $S \in \operatorname{Umaps}(\Sigma, Z, \underline{D}(\underline{K}))$ and $t \in T_{\Sigma \cup Z}$, let
(one $(S), t)=(S, t)(1, \ldots, 1)$, where the number of arguments 1 is $|t|_{Z}$.
Note that $($ one $(S), t)=(S, t)$ for every $t \in T_{\Sigma}$. We extend one to classes in the usual way.

Lemma. For every commutative semiring K, we have
$\operatorname{Rat}_{\mathrm{sr}}(\Sigma, Z, K)=\operatorname{one}(\operatorname{Rat}(\Sigma, Z, \underline{D}(\underline{K})))$.

A Kleene theorem for wta over commutative semirings

Corollary. For every commutative semiring K, we have that $\operatorname{Rec}_{\mathrm{sr}}(\Sigma, K)=\left.\operatorname{Rat}_{\mathrm{sr}}(\Sigma$, fin, $K)\right|_{T_{\Sigma}}$.

Proof.
a) $\left.\operatorname{Rat}_{\mathrm{sr}}(\Sigma, Z, K)\right|_{T_{\Sigma}}=\left.\operatorname{one}(\operatorname{Rat}(\Sigma, Z, \underline{D}(\underline{K})))\right|_{T_{\Sigma}}=\left.\operatorname{Rat}(\Sigma, Z, \underline{D}(\underline{K}))\right|_{T_{\Sigma}}$

Then
$\left.\operatorname{Rat}_{\mathrm{sr}}(\Sigma$, $\operatorname{fin}, \underline{K})\right|_{T_{\Sigma}}=\left.\operatorname{Rat}(\Sigma, \operatorname{fin}, \underline{D}(\underline{K}))\right|_{T_{\Sigma}}$
b) We already proved
$\operatorname{Rec}_{\mathrm{sr}}(\Sigma, K)=\operatorname{Rec}(\Sigma, \emptyset, \underline{D}(K))=\left.\operatorname{Rat}(\Sigma, \operatorname{fin}, \underline{D}(K))\right|_{T_{\Sigma}}$

Kleene theorem for wta over commutative semirings

Lemma. For every commutative semiring K, we have
$\operatorname{Rat}_{\mathrm{sr}}(\Sigma, Z, K)=\operatorname{one}(\operatorname{Rat}(\Sigma, Z, \underline{D}(\underline{K})))$.
Proof. We redefine rational expressions over Σ, Z and $\underline{D}(\underline{K})$:
$\operatorname{RatExp}(\Sigma, Z, \underline{D}(\underline{K}))$ and $\operatorname{Rat}^{\prime}(\Sigma, Z, \underline{D}(\underline{K}))$
(i) For every $z \in Z$ we have $z \in R$ and $\llbracket z \rrbracket=\operatorname{mul}_{1}^{(1)} . z$.
(ii) For every $k \geq 0, \sigma \in \Sigma^{(k)}$ and rational expressions $\eta_{1}, \ldots, \eta_{k} \in R$ we have $\sigma\left(\eta_{1}, \ldots, \eta_{k}\right) \in R$ and $\sigma\left(\eta_{1}, \ldots, \eta_{k}\right) \rrbracket=\operatorname{top}_{\sigma, \operatorname{mul}_{1}^{(k)}}\left(\llbracket \eta_{1} \rrbracket, \ldots, \llbracket \eta_{k} \rrbracket\right)$.
(iii) For every $\eta \in R$ and $a \in K$, the expression $(a \eta) \in R$ and $\llbracket(a \eta) \rrbracket=\operatorname{mul}_{a}^{(1)} \circ \llbracket \eta \rrbracket$.
(iv) For every $\eta_{1}, \eta_{2} \in R$ we have $\eta_{1}+\eta_{2} \in R$ and $\llbracket \eta_{1}+\eta_{2} \rrbracket=\llbracket \eta_{1} \rrbracket \oplus^{u} \llbracket \eta_{2} \rrbracket$.
(v) For every $\eta_{1}, \eta_{2} \in R$ and $z \in Z$ we have $\eta_{1} \cdot z \eta_{2} \in R$ and $\llbracket \eta_{1} \cdot z \eta_{2} \rrbracket=\llbracket \eta_{1} \rrbracket \cdot z \llbracket \eta_{2} \rrbracket$.
(vi) For every $\eta \in R$ and $z \in Z$ we have $\eta_{z}^{*} \in R$ and $\llbracket \eta_{z}^{*} \rrbracket=\llbracket \eta \rrbracket_{z}^{*}$.

Kleene theorem for wta over commutative semirings

Then

$$
\begin{aligned}
& \operatorname{Rat}^{\prime}(\Sigma, Z, \underline{D}(\underline{K}))=\operatorname{Rat}(\Sigma, Z, \underline{D}(\underline{K})) \text { and } \\
& \operatorname{RatExp}^{\prime}(\Sigma, Z, \underline{D}(\underline{K}))=\operatorname{RatExp}(\Sigma, Z, K) .
\end{aligned}
$$

Thus we can prove by induction on η : for every $\eta \in \operatorname{RatExp}^{\prime}(\Sigma, Z, \underline{D}(\underline{K}))$, $t \in T_{\Sigma}(Z)$, and $a_{1}, \ldots, a_{n} \in K$, we have that

$$
(\llbracket \eta \rrbracket, t)\left(a_{1}, \ldots, a_{n}\right)=\left(\llbracket \eta \rrbracket_{\mathrm{sr}}, t\right) \odot a_{1} \odot \ldots \odot a_{n}
$$

This implies that for every $\eta \in \operatorname{RatExp}^{\prime}(\Sigma, Z, \underline{D}(\underline{K}))$, we have $\llbracket \eta \rrbracket_{\mathrm{sr}}=$ one $(\llbracket \eta \rrbracket)$, where $\llbracket \eta \rrbracket_{\mathrm{sr}}$ denotes the semiring semantics of η.

References

[AB87] A. Alexandrakis and S. Bozapalidis. Weighted grammars and Kleene's theorem. Information Processing Letters, 24(1):1-4, January 1987.
[1] M. Droste, Chr. Pech, and H. Vogler. A Kleene theorem for weighted tree automata. Theory Comput. Syst., 38:1-38, 2005.
[2] Z. Ésik and W. Kuich. Formal tree series. J. Automata, Languages and Combinatorics, 8:219-285, 2003.
[3] Z. Fülöp, A. Maletti, and H. Vogler. A Kleene Theorem for Weighted Tree Automata over Distributive Multioperator Monoids (with A. Maletti and H. Vogler), Theory of Computing Systems, 44 (2009) 455-499.
[4] W. Kuich. Linear systems of equations and automata on distributive multioperator monoids. In Contributions to General Algebra 12 Proceedings of the 58th Workshop on General Algebra "58. Arbeitstagung Allgemeine Algebra", Vienna University of Technology. June 3-6, 1999, pages 1-10. Verlag Johannes Heyn, 1999.
[5] A. Maletti. Relating tree series transducers and weighted tree automata. Int. J. of Foundations of Computer Science, 16:723-741, 2005.

